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This paper presents a timestep stability analysis for a class of
discretisations applied to the linearised form of the Navier–Stokes
equations on a 3D domain with periodic boundary conditions. Using
a suitable definition of the ‘‘perturbation energy’’ it is shown that
the energy is monotonically decreasing for both the original p.d.e.
and the semi-discrete system of o.d.e.’s arising from a Galerkin
discretisation on a tetrahedral grid. Using recent theoretical results
concerning algebraic and generalised stability, sufficient stability
limits are obtained for both global and local timesteps for fully
discrete algorithms using Runge–Kutta time integration. Q 1997 Aca-

demic Press

1. INTRODUCTION

One motivation for the analysis in this paper was the
observation by Wigton of instabilities in Navier–Stokes
calculations on structured grids [1]. It appeared that the
instabilities might be connected to large variations in the
level of turbulent viscosity arising quite properly in certain
physical situations. A possible cause of the instability was
thought to be the timestep definition which was based
on Fourier stability theory assuming constant coefficients.
Therefore, an objective of this analysis was to determine
sufficient conditions for the stability of discretisations of
the Navier–Stokes equations with nonuniform viscosity.

The second motivation was the requirement for timestep
stability limits for viscous calculations on unstructured
grids. Inviscid calculations are now being performed almost
routinely on unstructured grids for complete aircraft geom-
etries (e.g. [2–5]). Using energy analysis methods, Giles
developed sufficient global and local timestep stability lim-
its for a Galerkin discretisation of the Euler equations on
a tetrahedral grid with two particular Runge–Kutta time
integration schemes [6]; this has been used on an ad hoc
basis for calculations using other algorithms including vari-
ous upwinding and numerical smoothing formulations [3,
5]. Through parallel computing and efficient multigrid al-
gorithms for unstructured grids [5], there is now the compu-
tational power to perform extremely large Navier–Stokes

calculations on unstructured grids, and so there is a need
for the supporting numerical analysis to give accurate
global and local timestep stability limits.

Fourier stability analysis can only be applied to linear
finite difference equations with constant coefficients on
structured grids, and so it is not appropriate for this applica-
tion. There are two other well-documented stability analy-
sis methods which can be used with linear discretisations
with variable coefficients on unstructured grids. One is the
energy method [7] which relies on the careful construction
of a suitably defined ‘‘energy’’ which can be proven to
monotonically decrease. The difficulty is usually in con-
structing an appropriate definition for the energy, but when
this method can be applied it is very powerful in giving a
very strong form of stability. It is used in this paper to
prove the stability of the original linearised form of the
Navier–Stokes partial differential equations, and the semi-
discretised system of coupled o.d.e.’s that is produced by
the Galerkin spatial discretisation.

The other stability analysis technique involves consider-
ation of the eigenvalues of the matrix representing the
discretisation of the spatial differential operator. This leads
to sufficient conditions for asymptotic stability, as t R y
for unsteady calculations or as n R y for calculations using
local timesteps. Unfortunately, there are well-documented
examples such as the first order upwinding of the convec-
tion equation on a finite 1D domain (e.g., [8–10]) for which
this is not a practical stability criterion because it allows
an unacceptably large transient growth before the eventual
exponential decay. The next section reviews this theory
showing that the problem of large transient growth can
arise whenever the spatial discretisation matrix is nonnor-
mal. It then presents recent results on algebraic and gener-
alised stability for such applications giving sufficient condi-
tions for stability. It is these new stability conditions which
are used to construct sufficient stability limits for the full
Galerkin/Runge–Kutta Navier–Stokes discretisation.

The analysis is performed for linear perturbations to a
steady flow in which all flow variables are uniform with

201



202 M. B. GILES

the exception of the three viscosity coefficients, e, the
shear viscosity, l, the second coefficient of viscosity, and
k, the thermal diffusivity. This choice of model problem
is critical in several ways. Although it is the linearisation
of the laminar Navier–Stokes equations that is used, the
viscosity coefficients can each be interpreted as the sum
of the laminar value plus a turbulent value arising from
some turbulence model. Accordingly, there is no assump-
tion of any fixed relationship between the three quantities,
either the Stokes hypothesis linking e and l, or the assump-
tion of a constant Prandtl number linking e and k. The
uniformity of the other flow variables is essential for key
parts of the analysis. However, a more fundamental aspect
of the uniformity is that it gives a physical situation in
which flow perturbations are naturally damped, and so the
flow is stable. Therefore, an instability of the semidiscrete
or fully discrete equations can be viewed justifiably as an
incorrect behaviour. The timestep limit which gives the
onset of this instability can then be defined as the maximum
stable timestep. In contrast, if a vortex sheet were taken
as the steady flow and then linear perturbations were ana-
lysed, it would be determined that both the analytic and
discrete equations were unstable. Even worse, the time-
scale of the most unstable discrete mode would be propor-
tional to Dx so that it would be impossible to distinguish
between a ‘‘numerical instability’’ and the natural Helm-
holtz instability of the vortex sheet. It would not therefore
be possible to use this alternative model problem to make
any deductions about stable timestep limits.

After the following section reviewing numerical stability
theory, there are separate sections for the analysis of the
differential, semidiscrete and fully discrete Navier–Stokes
equations. To focus attention on the important features of
the stability analysis, many of the supporting details are
presented in the three appendices.

2. REVIEW OF STABILITY THEORY FOR
RUNGE–KUTTA METHODS

Discretisation of the scalar o.d.e.,

du
dt

5 lu, (1)

using an explicit Runge–Kutta method with timestep k
yields a difference equation of the form

u(n11) 5 L(lk) u(n), (2)

where L(z) is a polynomial function of degree p,

L(z) 5 Op
m50

amzm, (3)

with a0 5 a1 5 1, ap ? 0. Discrete solutions of this difference
equation on a finite time interval 0 # t # t0 will converge

to the analytic solution as k R 0. In addition, the discretisa-
tion is said to be absolutely stable for a particular value of
k if it does not allow exponentially growing solutions as
t R y; this is satisfied, provided lk lies within the stability
region S in the complex plane defined by

S 5 hz : uL(z)u # 1j. (4)

Examples of stability regions for different polynomials are
given in Appendix A.

Suppose now that a real square matrix C has a complete
set of eigenvectors and can thus be diagonalised,

C 5 TLT21, (5)

with L being the diagonal matrix of eigenvalues of C, and
the columns of T being the associated eigenvectors. The
Runge–Kutta discretisation of the coupled system of
o.d.e.’s,

dU
dt

5 CU, (6)

can be written as

U(n11) 5 L(kC) U(n) 5 T L(kL) T21 U(n), (7)

since

C m 5 (TLT21)m 5 TLmT21. (8)

Hence

U(n) 5 T (L(kL))n T21 U(0). (9)

The necessary and sufficient condition for absolute sta-
bility as n R y, requiring that there are no discrete solu-
tions which grow exponentially with n, is therefore that
uL(kl)u # 1, or equivalently kl lies in S, for all eigenvalues
l of C. If this condition is satisfied, then using L2 vector
and matrix norms it follows that

iU(n)i # iT i iL(kL)iniT21i iU(0)i # k(T) iU(0)i, (10)

where k(T) is the condition number of the eigenvector
matrix T.

If the matrix C is normal, meaning that it has an ortho-
gonal set of eigenvectors, then the eigenvectors can be
normalised so that k(T) 5 1. In this case, iU(n)i is a non-
increasing function of n and iU(n)i2 represents a nonin-
creasing ‘‘energy’’ which could be used in an energy stabil-
ity analysis.

If C is not normal, then the growth in iU(n)i is bounded
by the condition number of the eigenvector matrix, k(T).
Unfortunately, this can be very large indeed, allowing a
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very large transient growth in the solution even when for
each eigenvalue kl lies strictly inside the stability region
S and so iU(n)i must eventually decay exponentially. This
problem can be particularly acute when the matrix C comes
from the spatial discretisation of a p.d.e. in which case there
is then a family of discretisations arising from a sequence of
computational grids of decreasing mesh spacing h. It is
possible in such circumstances for the sequence of condi-
tion numbers k(T) to grow exponentially, with an exponent
inversely proportional to the mesh spacing [8]. There are
two practical consequences of this exponential growth. In
applications concerned with the behaviour of the solution
as t R y, it produces an unacceptably large amplification
of machine rounding errors in linear computations and
complete failure of the discrete computation in nonlinear
cases. In applications concerned with a finite time interval,
0 # t # t0 , it prevents convergence of the discrete solution
to the analytic solution as h, k R 0 except in certain excep-
tional situations using spectral spatial discretisations.

The stability of discretisations of systems of o.d.e.’s with
non-normal matrices has been a major research topic in
the numerical analysis community in recent years [8, 9,
11–15]; a recent review article by van Dorsselaer et al. [10]
provides an excellent overview of these and many other
references. The application is often to families of nonnor-
mal matrices arising from spatial discretisations of p.d.e.’s.
Ideally, one would hope to prove strong stability,

iU(n)i # c iU(0)i, (11)

with c being a constant which is not only independent of
n but is also a uniform bound applying to all matrices
in the family of spatial discretisations for different mesh
spacings h but with the timestep k being a function of h.
One reason why strong stability is very desirable is that
the Lax equivalence theorem proves that it is a necessary
and sufficient condition for convergence of discrete solu-
tions to the analytic solution on a finite time interval for
all possible initial data, provided that the discretisation
of the p.d.e. is consistent for sufficiently smooth initial
data [7].

At present, the conditions under which strong stability
can be proved are too restrictive to be useful in practical
computations. Instead, attention has focussed on weaker
definitions of stability which are more easily achieved and
are still useful for practical computations. The one that is
used in this paper is algebraic stability [8, 11, 12] which
allows a linear growth in the transient solution of the form

iU(n)i # cn iU(0)i, (12)

where c is again a uniform constant. A sufficient condition
for algebraic stability is that

t(kC) , S, (13)

where the numerical range t(kC) is a subset of the complex
domain defined by

t(kC) 5 Hk
W*CW
W*W

: W ? 0J, (14)

where W can be any nonzero complex vector of the re-
quired dimension and W* is its Hermitian, the complex
conjugate transpose. The proof of sufficiency is given by
Lenferink and Spijker [12]. It proceeds in two parts, first
showing that a certain resolvent condition is sufficient for
algebraic stability and, then, showing that this resolvent
condition is satisfied if the numerical range lies inside S.
Reddy and Trefethen [8] prove that the resolvent condition
is necessary as well as sufficient for algebraic stability.

In related research, Kreiss and Wu [9] have defined
generalised stability which is based on exponentially
weighted integrals over time for a inhomogeneous differ-
ence equation with homogeneous initial conditions. A simi-
lar restriction on the numerical range provides a sufficient
condition for generalised stability; however, the theory at
present applies only to discretisations of hyperbolic p.d.e.’s
and so does not apply to the Navier–Stokes equations
considered in this paper.

By considering W to be an eigenvector of C, it can be
seen that kl [ t(kC) for each eigenvalue of C and so the
requirement that t(kC) , S is a tighter restriction on the
maximum allowable timestep than asymptotic stability. In
comparison to strong stability, algebraic stability allows
greater growth in transients when considering the solution
behaviour as t R y. On the finite time interval, it can be
shown that under some very mild technical conditions they
are sufficient for convergence of discrete solutions to the
analytic solution as h, k R 0 provided the initial data is
smooth and the discretisation is consistent. It thus appears
that this stability definition is a useful tool in analysing
numerical discretisations, but additional research is still re-
quired.

In the Navier–Stokes application in this paper we will
need to consider a slight generalisation to a system of
o.d.e.’s of the form

M
dU
dt

5 CU, (15)

in which M is a real symmetric positive-definite matrix.
The ‘‘energy’’ is defined as U*MU which suggests the defi-
nition of new variables,

W 5 M1/2U, (16)

so that iWi2 5 U*MU. If M is diagonal then M1/2 is the
diagonal matrix whose elements are the positive square
root of the corresponding elements of M. If M is not diago-
nal then M1/2 is equal to T21L1/2T, where L is the diagonal
matrix of eigenvalues of M and T is the corresponding
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matrix of orthonormal eigenvectors. T21 5 T* and hence
both M1/2 and M21/2 are symmetric and positive definite.

Under the change of variables, the system of o.d.e.’s be-
comes

dW
dt

5 M21/2CM21/2W, (17)

which is algebraically stable provided t(kM21/2CM21/2) ,
S. If C is either symmetric or antisymmetric then so too
is M21/2CM21/2 because of the symmetry of M21/2. There-
fore, as discussed earlier the condition that the numerical
range lies inside S also ensures that the energy, iWi2 5
U*MU, will be nonincreasing.

3. ANALYTIC EQUATIONS

The starting point for the analysis is the nonlinear Na-
vier–Stokes equations,

U
t

1
Fx

x
1

Fy

y
1

Fz

z
5 0. (18)

U is the vector of conservation variables (r, ru, rv, rw,
rE)T and the flux terms are all defined in Appendix B,
together with the equation of state for an ideal gas and
the definitions of the stress tensor and the viscous heat
flux vector. The equations are to be solved on a unit cubic
domain V with periodic boundary conditions. The choice
of periodic b.c.’s avoids the complication of analysing the
influence of different analytic and discrete boundary condi-
tions [16, 17].

The first step is to linearise the Navier–Stokes equations
by considering perturbations to a steady flow which is uni-
form apart from spatial variations in the viscosity parame-
ters e, l, k. Perturbations to the conserved variables are
then related to the symmetrising variables of Gustafsson
and Sundstrom [16] and Abarbanel and Gottlieb [18], by
the equation

Ũ 5 SW. (19)

The uniform transformation matrix S is given in Appendix
B. Together, the linearisation and the change of variables
yields an equation of the form

W
t

1 Ax
W
x

1 Ay
W
y

1 Az
W
z

5


x SDxx
W
x

1 Dxy
W
y

1 Dxz
W
z D

(20)

1


y SDyx
W
x

1 Dyy
W
y

1 Dyz
W
z D

1


z SDzx
W
x

1 Dzy
W
y

1 Dzz
W
z D ,

in which the matrices Ax , Ay , Az and the combined dissipa-
tion matrix

1
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz
2

are all symmetric. The matrices are listed in detail in Ap-
pendix B and it is also proved that the combined dissipation
matrix is positive semi-definite provided that e $ 0, 2e 1
3l $ 0, and k $ 0. These three conditions are satisfied by
the laminar viscosity coefficients; it will be assumed that
they are also satisfied by the coefficients defined by the
turbulence modelling.

The perturbation ‘‘energy’’ is defined as

E 5 E
V

1
2

W*W dV, (21)

where W* again denotes the Hermitian of W, and its rate
of change is

dE
dt

5 E
V

1
2 SW*

W
t

1
W*

t
WD dV

(22)

5 E
V

1
2 SW*

W
t

1 SW*
W
t D*D dV.

Using the fact that Ax is real and symmetric and, then,
integrating by parts using the periodic boundary condi-
tions,

E
V
SW*Ax

W
x D*

dV

5 E
V

W*
x

AxW dV 5 2E
V

W*Ax
W
x

dV (23)

⇒ E
V

W*Ax
W
x

1 SW*Ax
W
x D*

dV 5 0.

Similarly,

E
V

W*Ay
W
y

1 SW*Ay
W
y D*

dV 5 0,

(24)

E
V

W*Az
W
z

1 SW*Az
W
z D*

dV 5 0.
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Integrating the diffusion terms by parts and noting that

31
W
x

W
y

W
z

2
*

1
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz
2 1

W
x

W
y

W
z

24
*

(25)

51
W
x

W
y

W
z

2
*

1
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz
2 1

W
x

W
y

W
z

2
since the combined dissipation matrix is real and symmet-
ric, yields the final result,

dE
dt

5 2E
V1

W
x

W
y

W
z

2
*

1
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz
2 1

W
x

W
y

W
z

2 dV. (26)

Since the combined dissipation matrix is positive semi-
definite, the perturbation ‘‘energy’’ is nonincreasing
thereby proving stability in the energy norm.

4. SEMIDISCRETE EQUATIONS

Using an unstructured grid of tetrahedral cells with W
defined by linear interpolation between nodal values, the
standard Galerkin spatial discretisation of the transformed
p.d.e. is

MG
dW
dt

1 AW 5 2DW, (27)

where

mGij
5 E

V
NiNj I dV

aij 5 E
V

Ni SAx
Nj

x
1 Ay

Nj

y
1 Az

Nj

z D dV

dij 5 E
V
SDxx

Ni

x
Nj

x
1 Dxy

Ni

x
Nj

y
1 Dxz

Ni

x
Nj

z
(28)

1 Dyx
Ni

y
Nj

x
1 Dyy

Ni

y
Nj

y
1 Dyz

Ni

y
Nj

z

1 Dzx
Ni

z
Nj

x
1 Dzy

Ni

z
Nj

y
1 Dzz

Ni

z
Nj

z D dV.

The vector W of discrete nodal variables has five-compo-
nent subvectors wi at each node i. For a particular pair of
nodes i, j, mGij

, aij , and dij denote the corresponding 5 3 5
submatrices of the matrices MG , A, and D, respectively.
Ni is the piecewise linear function which is equal to unity
at node i and zero at all other nodes, and the viscosity
parameters e, l, and k within the dissipation matrices are
defined to be constant on each tetrahedron.

An important point to note is that exactly the same
semidiscrete equation would be obtained if one performed
a Galerkin discretisation of the nonlinear Navier–Stokes
equations expressed using the original conservative vari-
ables U, and then linearised the equations and transformed
the variables to the symmetric variables W. Therefore,
the stability analysis to be performed using the symmetric
variables applies equally to actual computations performed
using conservative variables.

A standard modification is to ‘‘mass-lump’’ the matrix
MG , turning it into a diagonal matrix M with

mii 5 O
j

mGij
5 E

V
Ni I dV 5 Vi I, (29)

where Vi is the volume associated with node i, defined as
one quarter of the sum of the volumes of the sur-
rounding tetrahedra.

Another standard modification when interested in accel-
erating convergence to a steady-state solution, is to precon-
dition the ‘‘mass-lumped’’ matrix so that

mii 5
Vi

Dti
I. (30)

The objective of this preconditioning is to use local time-
steps, Dti , which are larger in large computational cells
than in small ones, so that fewer iterations of the fully
discrete equations will be needed to converge to the steady-
state solution to within some specified tolerance.

The matrix A is antisymmetric since, integrating by parts,

aij 5 2E
V
SAx

Ni

x
Nj 1 Ay

Ni

y
Nj 1 Az

Ni

z
NjD dV

5 2E
V

Nj SAT
x

Ni

x
1 AT

y
Ni

y
1 AT

z
Ni

z D dV (31)

5 2(aji)T.

The matrix D is clearly symmetric. Furthermore, for any
vector W,

W*DW 5 E
V1

W
x

W
y

W
z

2
*

1
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz
2 1

W
x

W
y

W
z

2 dV,

(32)
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where

W
x

5 O
i

Ni

x
wi

W
y

5 O
i

Ni

y
wi (33)

W
z

5 O
i

Ni

z
wi .

Since the combined dissipation matrix is positive semi-
definite, it follows, therefore, that D is also positive semi-
definite.

Defining the ‘‘energy’’ for arbitrary complex W as either
E 5 AsW*MGW or E 5 AsW*MW, depending whether or not
mass-lumping is used,

dE
dt

5 2
1
2

(W*(A 1 D)W 1 W*(A 1 D)*W)

5 2
1
2

(W*(A 1 D)W 1 W*(2A 1 D)W) (34)

5 2W*DW # 0,

and so the energy is nonincreasing. Since both MG and M
are symmetric and positive definite this in turn implies
stability for the semidiscrete equations.

Note that other discretisations of the Navier–Stokes
equations will result in equations of the form

M
dU
dt

5 CU, (35)

where M is a symmetric positive definite ‘‘mass’’ matrix
and C can be decomposed into its symmetric and antisym-
metric components,

C 5 2(A 1 D), A 5 2As(C 2 CT), D 5 2As(C 1 CT).
(36)

Although A is primarily due to the convective discretisa-
tion, in general it may also contain some terms due to the
viscous discretisation. Similarly, D is primarily due to the
viscous discretisation but may also contain some terms due
to the numerical smoothing associated with the convective
discretisation. D must still be positive semidefinite to en-
sure stability.

5. FULLY DISCRETE EQUATIONS

Using Runge–Kutta time integration the fully discrete
equations using one of the two diagonal mass matrices are

W(n11) 5 L(kM21C) W(n), (37)

where L(z) is the Runge–Kutta polynomial with stability
region S as defined in Section 2 and C 5 2(A 1 D). As

explained in Section 2, sufficient conditions for algebraic
and generalised stability are that

t(kM21/2CM21/2) , S, (38)

where

t(kM21/2CM21/2) 5 H2k
W*M21/2CM21/2W

W*W
: W ? 0J .

(39)

For unsteady calculations with the diagonal mass-
lumped matrix, the aim is simply to find the largest k such
that the constraint, Eq. (38), is satisfied. For steady-state
calculations using the preconditioned mass matrix, one
uses a pseudo-timestep k 5 1 and then the objective is to
define the local timesteps Dti to be as large as possible,
again subject to the sufficient stability constraint, Eq. (38).

The difficulty is that direct evaluation of t(kM21/2

CM21/2) is not possible. Instead, a bounding set is con-
structed to enclose the numerical range and sufficient con-
ditions are determined for this bounding set to lie inside S.

There are two choices of bounding set which are rela-
tively easily constructed, a half-disk and a rectangle. The
construction of the bounding half-disk starts with the ob-
servation that, when using L2 norms,

UW*M21/2CM21/2W
W*W U# iM21/2CM21/2i. (40)

Let the variable r be defined by

r 5 max
i
Hm21

i max HO
j

icij i, O
j

icjiiJJ , (41)

where

mi 5 5
Vi , mass-lumped matrix

Vi

Dti
, preconditioned mass-lumped matrix.

(42)

Considering an arbitrary vector V, with subvector vi at
each node i,

iM21/2CM21/2V i2 5 O
i

m21
i UO

j
cij(m21/2

j vj)U2

# O
i, j,k

m21
i iciji m21/2

j ivji iciki m21/2
k ivki

# O
i, j,k

m21
i m21

j ivji2iciji iciki (43)

# r O
i, j

m21
j ivji2iciji

# r2iVi2,

⇒ iM21/2CM21/2i # r.
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The third line in the above derivation uses the inequality

m21/2
j ivjim21/2

k ivki # As(m21
j ivji2 1 m21

k ivki2), (44)

followed by an interchange of subscripts to replace m21
k

ivki2 by m21
j ivji2 given that iciji iciki is symmetric in j and k.

Also, for an arbitrary vector W,

W*CW 1 (W*CW)* 5 W*(C 1 C*)W
(45)

5 22W*DW # 0

and so the real component of W*CW must be zero or
negative. Combined with the previous bound, this means
that t(kM21/2CM21/2) must therefore lie in the half-disk

hz 5 x 1 iy : x # 0, uzu # krj.

For unsteady calculations, the necessary and sufficient con-
dition for the half-disk to lie inside S, and thus a sufficient
condition for algebraic and generalised stability is

kr # rc , (46)

where rc is the radius of the half-disk inscribing S, as defined
and illustrated in Appendix A.

For preconditioned steady-state calculations with local
timesteps, k 5 1 and so the largest value for r for which
the half-disk lies inside S is rc . For each node i, Dti is then
maximised subject to the definition of r by

Dti 5
rcVi

max HO
j

iciji, O
j

icjiiJ . (47)

These stability limits require knowledge of iciji. Appen-
dix C evaluates iaiji exactly, using the fact that it is a
symmetric matrix. Since aji 5 2aT

ij 5 2aij , it follows that
iajii 5 iaiji. Appendix C also constructs a tight upper bound
for idiji and idjii. From these, an upper bound for iciji is
obtained. Replacing iciji by this upper bound in the above
stability limits gives a new slightly more restrictive suffi-
cient stability condition which can be easily evaluated.

The rectangular bounding set is obtained by considering
separately the numerical ranges of D and A. Since D is
symmetric and positive semidefinite, the quantity x 5
2W*M21/2DM21/2W / W*W is real and negative with
2xd # x # 0 and xd defined by

xd 5 max
i
Hm21

i max HO
j

idiji, O
j

idjiiJJ . (48)

Similarly, since A is anti-symmetric, y 5
iW*M21/2AM21/2W / W*W is real and uyu # ya with ya de-

fined by

ya 5 max
i
Hm21

i max HO
j

iaiji, O
j

iajiiJJ
(49)

5 max
i
Hm21

i O
j

iaijiJ .

Thus the numerical range t(kM21/2CM21/2) must lie in-
side the rectangle

R 5 hx 1 iy : 2kxd # x # 0, uyu # kyaj. (50)

For unsteady calculations, a sufficient stability limit is
obtained by requiring that R , S. If the boundary of S
can be represented by z 5 r exp(iu) with r(u) being a
single-valued function for f/2 # u # 3f/2 then this can be
written as

k Ïx2
d 1 y2

a # r(u), tan(u) 5 2
ya

xd
. (51)

For preconditioned steady-state calculations, we again let
k 5 1 and can then choose any rectangle R which inscribes
S. Appendix A shows the particular example of a half-
square for which xd 5 ya . The maximum local timestep Dti

subject to the definitions of both xD and yA is then

Dti 5 min 5
xdVi

max HO
j

idiji, O
j

idjiiJ ,
yaViO
j

iaiji6 . (52)

The final form of the stability limit is again obtained by
using the results of Appendix C to evaluate iaiji and place
an upper bound on idiji and idjii.

It is difficult to predict a priori which bounding set will
give the least restrictive sufficient stability conditions. It
depends in part on the particular Runge–Kutta method
which is used. Appendix A shows that for some methods
the inscribing half-disk almost contains the inscribing half-
square and other rectangles lying inside S; in this case the
half-disk sufficient stability conditions will probably be less
restrictive. With other methods, the half-square almost
contains the inscribing half-disk and for these the half-
square stability conditions will probably be less restrictive.

6. NUMERICAL EXPERIMENTS

A number of numerical experiments have been per-
formed to test how close the predicted sufficient stability
limits are to the necessary stability limits.

The calculations use a tetrahedral grid created from a
uniform 10 3 10 3 10 Cartesian grid by cutting each hexa-
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hedron into six tetrahedra. As indicated in Table I, cases
1 and 3 use a grid based on a Cartesian grid with the same
spacing in each direction, whereas for cases 2 and 4, the
spacing in the y-direction is decreased by the specified
amount. Periodic boundary conditions are used on all sides
of the grid.

In all of the computations the mean flow is aligned with
the x-axis and the Mach number is 0.5. Cases 1 and 2 are
inviscid, while for cases 3 and 4 the cell Reynolds number
ReDy ; ru Dy/e is 1.0, the Prandtl number is 0.9 and
l 5 2Sde.

The four-stage Runge–Kutta method described in Ap-
pendix A is used for the time-marching. The time-step is

TABLE I

Parameters for Four Numerical Test Cases

Grid stretching ratio Cell Reynolds number

Case 1 1 : 1 y
Case 2 10 : 1 y
Case 3 1 : 1 1.0
Case 4 100 : 1 1.0

taken to be

Dti 5
rViO

j
icijibound

, (53)

where icijibound denotes the upper bound for iciji derived
in Appendix C. For each case, calculations were performed
for a range of values of r starting with r 5 2.75 and increas-
ing in increments of 0.25. The initial conditions for the
linear perturbation variables corresponded to a perturba-
tion in pressure and density at one corner of the grid, and
an equal but opposite perturbation in the centre. Figure 1
shows the evolution of the energy for the four cases, using
a log scale for the energy.

Case 1 is the inviscid case on an unstretched grid. The
theory for the rectangular bounding set predicts stability
for r , ra and in this case ra P 2.828. The results, however,
show the actual stability boundary is at r P 4.4. Thus, the
theory underpredicts the stability boundary by approxi-
mately 35%.

Case 2 is the inviscid case on a grid with a 10 : 1 stretching
ratio. The theory again predicts stability for r , ra . The

FIG. 1. Evolution of energy in four test cases.
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results show the actual stability boundary to be at r P 3.4
so the sufficient stability theory now underpredicts the
stability boundary by only 15%.

Both of these results are consistent with previous results
by the author using energy analysis for two specific Runge–
Kutta methods [6]. In that earlier work, the sufficient stabil-
ity limit derived by energy analysis was compared to the
necessary and sufficient Fourier stability limit for a uniform
mesh. At worst, when the Mach number was zero and the
grid spacing the same in each direction, the timestep limit
from the energy analysis was 40% less than that from the
Fourier analysis. At best, at high Mach numbers or on
stretched grids, the two timestep limits were almost equal.

Note also that when the timestep is stable the results
show a monotonic decrease in the energy. This is as pre-
dicted by the theory since in these two cases there is only
the A matrix, and it is normal.

In case 3, the inviscid and viscous terms are equally
important because of the unit cell Reynolds number. With
the unstretched grid, this case is representative of turbulent
flow calculations in combustors and wakes with very high
levels of turbulent viscosity. The theory for the half-disk
bounding set predicts stability for r , rc , and for this
Runge–Kutta method rc P 2.616. The results show the
actual stability boundary is at r P 5.8 so the theory un-
derpredicts the stability boundary by 55%.

Case 4 is similar to case 3, but with a grid with a 100 : 1
stretching ratio representative of a boundary layer grid. In
this case the actual stability boundary is at r P 3.9, and so
the amount by which the theory underpredicts the stability
boundary is reduced to 33%.

It is interesting that in these last two cases there is again
a monotonic decrease in the energy when the timestep is
stable. This is not predicted by the theory. It may be due
to the particular choice of initial conditions, but attempts
to find different initial conditions giving a transient energy
growth were unsuccessful.

7. CONCLUSIONS

This paper has analysed the stability of one class of
discretisations of the Navier–Stokes equations on a tetra-
hedral grid. The sufficient stability limits for both global
and local timesteps are based on recent advances in numer-
ical analysis. Numerical results demonstrate that in the
worst case the sufficient stability limit can be less than half
the necessary stability limit, but when the grid is highly
stretched or the viscous terms are negligible the sufficient
limit is much closer to the necessary limit.

Future research will consider the application of this
method of stability analysis to other discretisations of the
Euler and Navier–Stokes equations. Upwind approxima-

tions of the inviscid fluxes would be a particularly interest-
ing topic for study. As indicated at the end of Section 4,
this would change the definition of the dissipation matrix
D, but the overall approach to the stability analysis would
remain valid. It may also be possible to investigate the
stability of different Navier–Stokes boundary condition
implementations by incorporating these within the coupled
system of o.d.e.’s.

APPENDIX A: RUNGE–KUTTA STABILITY CURVES

An example of a Runge–Kutta type of approximation
of the o.d.e.,

du
dt

5 lu, (54)

is the two-stage predictor–corrector method,

u(1) 5 un 1 klun

(55)
un11 5 un 1 klu(1).

Combining these two equations gives

un11 5 L(kl) un, (56)

where the Runge–Kutta polynomial function is L(z) 5
1 1 z 1 z2. Figure 2a shows the stability region S within
which uLu # 1. It also shows the largest half-disk,

hz 5 x 1 iy : x # 0, uzu # rcj,

and the largest half-square,

Hz 5 x 1 iy : 2
rs

Ï2
# x # 0, uyu #

rs

Ï2
J,

which lie inside S. If the boundary of S is defined as z 5
r exp(iu) then rc and rs can be defined as

rc 5 min
f/2#u#3f/2

r(u), rs 5 r(Dff). (57)

The values of rc and rs are listed to the right of the figure
along with those of two other important parameters, ra 5
r(Asf), which is the length of the positive imaginary axis
segment within S, and rd 5 r(f), which is the length of the
negative real axis segment within S. The importance of all
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four of these parameters is discussed in the main test in
Section 5.

Figures 2b and 2c show the corresponding curves and
data for two other popular multistage integration schemes.

APPENDIX B: VECTORS, MATRICES,
AND POSITIVITY

Starting with the conservative form of the Navier–Stokes
equations, the state vector and flux vectors are

U 51
r

ru

rv

rw

rE

2 ,

Fx 51
ru

ru2 1 p 2txx

ruv 2tyx

ruw 2tzx

ru SE 1
p
r
D 2utxx 2 vtyw 2 wtzx 1 qx

2
(58)

Fy 51
rv

ruv 2txy

rv2 1 p 2tyy

rvw 2tzy

rv SE 1
p
r
D 2utxy 2 vtyy 2 wtzy 1 qy

2
Fz 51

rw

ruw 2txz

rvw 2tyz

rw2 1 p 2tzz

rw SE 1
p
r
D 2utxz 2 vtyz 2 wtzz 1 qz

2 ;

r, u, v, w, p, E are the density, three Cartesian velocity
components, pressure, and total internal energy, respec-
tively. To complete the system of equations requires an
equation of state for an ideal gas,

p 5 rRT 5 (c 2 1)r(E 2 As(u2 1 v2 1 w2)), (59)

in which R, T, c are the gas constant, temperature, and
uniform specific heat ratio, respectively, as well as equa-
tions defining the heat fluxes,

qx 5 2k
T
x

, qy 5 2k
T
y

, qz 5 2k
T
z

, (60)

FIG. 2. Stability boundary and inscribing half-disk and half-square
for three Runge–Kutta methods.
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and the viscous stress terms,

txx 52e
u
x

1l Su
x

1
v
y

1
w
zD, txy 5tyx 5e Su

y
1

v
xD,

tyy 52e
v
y

1l Su
x

1
v
y

1
w
zD, txz 5tzx 5e Su

z
1

w
xD,

tzz 52e
w
z

1l Su
x

1
v
y

1
w
zD, tyz 5tzy 5e Sv

z
1

w
yD.

(61)

The transformation between the conservative variables
and the symmetrising variables of Gustafsson and Sund-
strom [16] and Abarbanel and Gottlieb [18], ((1/Ïc)(c/
r)r̃, ũ, ṽ, w̃, (1/Ïc(c 2 1))(c/T)T̃)T, is accomplished by
the matrix

S 51
Ïc

r

c
0 0 0 0

Ïc
ru
c

r 0 0 0

Ïc
rv
c

0 r 0 0

Ïc
rw
c

0 0 r 0

Ïc
rE
c

ru rv rw ! c
c 2 1

p
c

2. (62)

The linearised, transformed equations are

W
t

1 Ax
W
x

1 Ay
W
y

1 Az
W
z

5


x SDxx
W
x

1 Dxy
W
y

1 Dxz
W
z D

(63)

1


y SDyx
W
x

1 Dyy
W
y

1 Dyz
W
z D

1


z SDzx
W
x

1 Dzy
W
y

1 Dzz
W
z D,

where

Ax 51
u

1

Ïc
c 0 0 0

1

Ïc
c u 0 0 !c 2 1

c
c

0 0 u 0 0

0 0 0 u 0

0 !c 2 1
c

c 0 0 u

2,

Ay 51
v 0

1

Ïc
c 0 0

0 v 0 0 0

1

Ïc
c 0 v 0 !c 2 1

c
c

0 0 0 v 0

0 0 !c 2 1
c

c 0 v

2, (64)

Az 51
w 0 0

1

Ïc
c 0

0 w 0 0 0

0 0 w 0 0

1

Ïc
c 0 0 w !c 2 1

c
c

0 0 0 !c 2 1
c

c w

2,

and

Dxx 51
0 0 0 0 0

0
2e 1 l

r
0 0 0

0 0
e
r

0 0

0 0 0
e
r

0

0 0 0 0
ce
Pr r

2,

Dxy 5 DT
yx 51

0 0 0 0 0

0 0
l

r
0 0

0
e
r

0 0 0

0 0 0 0 0

0 0 0 0 0

2,
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Dyy 51
0 0 0 0 0

0
e
r

0 0 0

0 0
2e 1 l

r
0 0

0 0 0
e
r

0

0 0 0 0
ce
Pr r

2,
(65)

Dxz 5 DT
zx 51

0 0 0 0 0

0 0 0
l

r
0

0 0 0 0 0

0
e
r

0 0 0

0 0 0 0 0

2,

Dzz 51
0 0 0 0 0

0
e
r

0 0 0

0 0
e
r

0 0

0 0 0
2e 1 l

r
0

0 0 0 0
ce
Pr r

2,

Dyz 5 DT
zy 51

0 0 0 0 0

0 0 0 0 0

0 0 0
l

r
0

0 0
e
r

0 0

0 0 0 0 0

2.

The Prandtl number is defined as

Pr 5
ecp

k
5

ceR
(c 2 1)k

, (66)

but it is not assumed to be uniform, since l and k, in
general, represent combinations of laminar and turbulent
viscosities, each with their own Prandtl number.

An important feature of the transformed equations is
that the combined dissipation matrix,

1
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz
2,

is both symmetric and positive semidefinite. The symmetry
is clear from the above definitions of the component matri-
ces, and the positivity comes from noting that

xT 1
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz
2 x

5
e
r

(x3 1 x7)2 1
e
r

(x4 1 x12)2 1
e
r

(x9 1 x13)2

(67)

1
1
r 1

x2

x8

x14
2

T

1
2e 1 l l l

l 2e 1 l l

l l 2e 1 l
2 1

x2

x8

x14
2

1
ce
Prr

(x2
5 1 x2

10 1 x2
15).

The eigenvalues of

1
2e 1 l l l

l 2e 1 l l

l l 2e 1 l
2

are 2e, 2e, 2e 1 3l and, hence, the combined dissipation
matrix is positive semidefinite, provided e $ 0, 2e 1
3l $ 0, and k $ 0.

APPENDIX C: L2 NORMS OF COMPONENT MATRICES

Defining

E
V

Ni=Nj dV 5 Sn, (68)

then
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aij 5 S(nxAx 1 nyAy 1 nzAz) 5 S1
u ? n

1

Ïc
cnx

1

Ïc
cny

1

Ïc
cnz 0

1

Ïc
cnx u ? n 0 0 !c 2 1

c
cnx

1

Ïc
cny 0 u ? n 0 !c 2 1

c
cny

1

Ïc
cnz 0 0 u ? n !c 2 1

c
cnz

0 !c 2 1
c

cnx !c 2 1
c

cny !c 2 1
c

cnz u ? n

2.
(69)

Three of the eigenvalues of S21aij are equal to u ? n and
the other two are u ? n 6 c, and so

iaiji 5 S(uu ? nu 1 c), (70)

since the L2 norm of a symmetric matrix is the magnitude
of the largest eigenvalue.

The quantity Sn can be interpreted geometrically. First
note that =Nj is nonzero only on tetrahedra surrounding
node j, and that on such a tetrahedron, labelled s,

=Nj 5
1

3Vs
Ss

j , (71)

where Ss
j is the inward-pointing area vector of the face of

s opposite node j and Vs is the volume of the tetrahedron.
Summing over all tetrahedra for which both i and j are

0 0 0 0 0

0 0l

r

Ni

x
Nj

y
l

r

Ni

x
Nj

z
e 1 l

r

Ni

x
Nj

x

1
e
r

=Ni ? =Nj 1
e
r

Ni

z
Nj

x
1

e
r

Ni

y
Nj

x

0 0e 1 l

r

Ni

y
Nj

y
l

r

Ni

y
Nj

z
l

r

Ni

y
Nj

x

1
e
r

=Ni ? =Nj 1
e
r

Ni

z
Nj

y
1

e
r

Ni

x
Nj

y
d s

ij 5 Vs . (74)

0 0l

r

Ni

z
Nj

y
e 1 l

r

Ni

z
Nj

z
l

r

Ni

z
Nj

x

1
e
r

=Ni ? =Nj1
e
r

Ni

x
Nj

z
1

e
r

Ni

y
Nj

z

0 0 0 0 ce
Prr

=Ni ? =Nj

corner nodes gives

Sn 5
1
12 Os

Ss
j . (72)

Define d s
ij to be the contribution to dij from the integra-

tion over tetrahedron s. Therefore,

dij 5 O
s

d s
ij ⇒ idiji # O

s

id s
iji, (73)

where again the summation is over tetrahedra common to
both i and j. On tetrahedron s, =Ni , and =Nj are both
uniform and so
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Hence,

id s
iji # Vs max H2e 1 l

r
u=Niu u=Nju,

ce
Prr

u=Ni ? =NjuJ (75)

which can be reexpressed using the values for =Ni and
=Nj as

id s
iji #

1
9Vs

max H2e 1 l

r
uSs

i u uSs
j u, ce

Prr
uSs

i ? Ss
j uJ , (76)

where Ss
i and Ss

j are as defined previously. Note that the
upper bound on the right-hand side of Eq. (76) is un-
changed if i and j are interchanged, and so it is also an
upper bound for id s

jii. Hence,

maxhidiji, idjiij
(77)

# O
s

1
9Vs

max H2e 1 l

r
uSs

i u uSs
j u, ce

Prr
uSs

i ? Ss
j uJ .

The exact value for iaiji and the upper bounds for idiji,
idjii can then be combined by the triangle inequality,

iciji 5 iaij 1 diji # iaiji 1 idiji, (78)

to get upper bounds for iciji and icjii for use in the sufficient
stability limits derived in Section 5 in the main text.
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3. J. Peraire, J. Peiró, and K. Morgan, Finite element multigrid solution
of Euler flows past installed aero-engines, Comput. Mech. 11, 433
(1993).

4. R. D. Rausch, J. T. Batina, and H. T. Y. Yang, Three-dimensional
time-marching aeroelastic analyses using an unstructured-grid Euler
method, AIAA J. 31(9), 1626 (1993).

5. P. Crumpton and M. B. Giles, AIAA Paper 95-0210, 1995.

6. M. B. Giles, Technical Report TR-87-1, MIT Dept. of Aero. and
Astro., 1987.

7. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-
Value Problems, 2nd ed. (Wiley-Interscience, New York, 1967); re-
print, (Krieger, Malabar, 1994).

8. S. C. Reddy and L. N. Trefethen, Stability of the method of lines,
Numer. Math. 62, 235 (1992).

9. H. O. Kreiss and L. Wu, On the stability definition of difference
approximations for the initial boundary value problem, Appl. Numer.
Math. 12, 213 (1993).

10. J. L. M. van Dorsselaer and J. F. B. Kraaijevanger, Linear stability
analysis in the numerical solution of initial value problems, Acta
Numer., p. 199, 1993.

11. J. F. B. M. Kraaijevanger, H. W. J. Lenferink, and M. N. Spijker,
Stepsize restrictions for stability in the numerical solution of ordinary
and partial differential equations, J. Comput. Appl. Math. 20, 67
(1987).

12. H. W. J. Lenferink and M. N. Spijker, On the use of stability regions
in the numerical analysis of initial value problems, Math Comput.
57(195), 221 (1991).

13. S. C. Reddy and L. N. Trefethen, Lax-stability of fully discrete spectral
methods via stability regions and pseudo-eigenvalues, Comput. Meth-
ods Appl. Mech. Engrg. 80, 147 (1990).

14. S. C. Reddy, Pseudospectra of Operators and Discretization Matrices
and an Application to Stability of the Method of Lines, Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, MA 02139, 1991;
Numerical Analysis Report 91-4.

15. C. Lubich and O. Nevanlinna, On resolvent conditions and stability
estimates, BIT 31, 293 (1991).

16. B. Gustafsson and A. Sundström, Incompletely parabolic problems
in fluid dynamics, SIAM J. Appl. Math. 35(2), 343 (1978).

17. P. Dutt, Stable boundary conditions and difference schemes for the
Navier–Stokes equations, SIAM J. Numer. Anal. 25, 245 (1988).

18. S. Abarbanel and D. Gottlieb, Optimal time splitting for two- and
three-dimensional Navier–Stokes equations with mixed derivatives,
J. Comput. Phys. 35, 1 (1981).


